Rule of 400

Capturing stars as points instead of trails.
400 / focal length x LMF = Max number of seconds before stars blur due to earths rotation.

Example: Full frame camera, focal length 28 mm . $400 / 28=14.3$ seconds is the longest acceptable shutter speed.

Full Frame Camera:
$14 \mathrm{~mm}=29$ seconds
$16 \mathrm{~mm}=25$ seconds
$17 \mathrm{~mm}=24$ seconds
$18 \mathrm{~mm}=22$ seconds
$20 \mathrm{~mm}=20$ seconds
$22 \mathrm{~mm}=18$ seconds
$24 \mathrm{~mm}=17$ seconds
$28 \mathrm{~mm}=14$ seconds
$35 \mathrm{~mm}=11$ seconds
$50 \mathrm{~mm}=8$ seconds
1.5 LMF:
$10 \mathrm{~mm}=27$ seconds
$12 \mathrm{~mm}=22$ seconds
$14 \mathrm{~mm}=19$ seconds
$16 \mathrm{~mm}=18$ seconds
$18 \mathrm{~mm}=15$ seconds
$20 \mathrm{~mm}=13$ seconds
$24 \mathrm{~mm}=11$ seconds
$28 \mathrm{~mm}=10$ seconds
$35 \mathrm{~mm}=8$ seconds
$50 \mathrm{~mm}=5$ seconds

I always recommend buying lenses made by the manufacturer of the camera, but here is an exception:

An affordable (approx. \$325) lens for night, sky photography that has been well received by enthusiasts is the Rokinon, $14 \mathrm{~mm}, 2.8$. This is a manual lens, no big deal, but will require adjustments to one's field workflow.

Rokinon is not generally recognized as a high quality lens manufacturer, but this lens performs surprising well. Of course manufacturing quality control sometimes allows poor copies of this lens make it to market. As always I recommend testing the lens for acceptability upon purchase. These lenses should be checked before use as they may not be as durable as name brand lenses.

